crypto-algorithms.c

Basic implementations of standard cryptography algorithms, like AES and SHA-1
git clone git://git.finwo.net/lib/crypto-algorithms.c
Log | Files | Refs | README

md5.c (5832B)


      1 /*********************************************************************
      2 * Filename:   md5.c
      3 * Author:     Brad Conte (brad AT bradconte.com)
      4 * Copyright:
      5 * Disclaimer: This code is presented "as is" without any guarantees.
      6 * Details:    Implementation of the MD5 hashing algorithm.
      7 				  Algorithm specification can be found here:
      8 				   * http://tools.ietf.org/html/rfc1321
      9 				  This implementation uses little endian byte order.
     10 *********************************************************************/
     11 
     12 /*************************** HEADER FILES ***************************/
     13 #include <stdlib.h>
     14 #include <memory.h>
     15 #include "md5.h"
     16 
     17 /****************************** MACROS ******************************/
     18 #define ROTLEFT(a,b) ((a << b) | (a >> (32-b)))
     19 
     20 #define F(x,y,z) ((x & y) | (~x & z))
     21 #define G(x,y,z) ((x & z) | (y & ~z))
     22 #define H(x,y,z) (x ^ y ^ z)
     23 #define I(x,y,z) (y ^ (x | ~z))
     24 
     25 #define FF(a,b,c,d,m,s,t) { a += F(b,c,d) + m + t; \
     26                             a = b + ROTLEFT(a,s); }
     27 #define GG(a,b,c,d,m,s,t) { a += G(b,c,d) + m + t; \
     28                             a = b + ROTLEFT(a,s); }
     29 #define HH(a,b,c,d,m,s,t) { a += H(b,c,d) + m + t; \
     30                             a = b + ROTLEFT(a,s); }
     31 #define II(a,b,c,d,m,s,t) { a += I(b,c,d) + m + t; \
     32                             a = b + ROTLEFT(a,s); }
     33 
     34 /*********************** FUNCTION DEFINITIONS ***********************/
     35 void md5_transform(MD5_CTX *ctx, const BYTE data[])
     36 {
     37 	WORD a, b, c, d, m[16], i, j;
     38 
     39 	// MD5 specifies big endian byte order, but this implementation assumes a little
     40 	// endian byte order CPU. Reverse all the bytes upon input, and re-reverse them
     41 	// on output (in md5_final()).
     42 	for (i = 0, j = 0; i < 16; ++i, j += 4)
     43 		m[i] = (data[j]) + (data[j + 1] << 8) + (data[j + 2] << 16) + (data[j + 3] << 24);
     44 
     45 	a = ctx->state[0];
     46 	b = ctx->state[1];
     47 	c = ctx->state[2];
     48 	d = ctx->state[3];
     49 
     50 	FF(a,b,c,d,m[0],  7,0xd76aa478);
     51 	FF(d,a,b,c,m[1], 12,0xe8c7b756);
     52 	FF(c,d,a,b,m[2], 17,0x242070db);
     53 	FF(b,c,d,a,m[3], 22,0xc1bdceee);
     54 	FF(a,b,c,d,m[4],  7,0xf57c0faf);
     55 	FF(d,a,b,c,m[5], 12,0x4787c62a);
     56 	FF(c,d,a,b,m[6], 17,0xa8304613);
     57 	FF(b,c,d,a,m[7], 22,0xfd469501);
     58 	FF(a,b,c,d,m[8],  7,0x698098d8);
     59 	FF(d,a,b,c,m[9], 12,0x8b44f7af);
     60 	FF(c,d,a,b,m[10],17,0xffff5bb1);
     61 	FF(b,c,d,a,m[11],22,0x895cd7be);
     62 	FF(a,b,c,d,m[12], 7,0x6b901122);
     63 	FF(d,a,b,c,m[13],12,0xfd987193);
     64 	FF(c,d,a,b,m[14],17,0xa679438e);
     65 	FF(b,c,d,a,m[15],22,0x49b40821);
     66 
     67 	GG(a,b,c,d,m[1],  5,0xf61e2562);
     68 	GG(d,a,b,c,m[6],  9,0xc040b340);
     69 	GG(c,d,a,b,m[11],14,0x265e5a51);
     70 	GG(b,c,d,a,m[0], 20,0xe9b6c7aa);
     71 	GG(a,b,c,d,m[5],  5,0xd62f105d);
     72 	GG(d,a,b,c,m[10], 9,0x02441453);
     73 	GG(c,d,a,b,m[15],14,0xd8a1e681);
     74 	GG(b,c,d,a,m[4], 20,0xe7d3fbc8);
     75 	GG(a,b,c,d,m[9],  5,0x21e1cde6);
     76 	GG(d,a,b,c,m[14], 9,0xc33707d6);
     77 	GG(c,d,a,b,m[3], 14,0xf4d50d87);
     78 	GG(b,c,d,a,m[8], 20,0x455a14ed);
     79 	GG(a,b,c,d,m[13], 5,0xa9e3e905);
     80 	GG(d,a,b,c,m[2],  9,0xfcefa3f8);
     81 	GG(c,d,a,b,m[7], 14,0x676f02d9);
     82 	GG(b,c,d,a,m[12],20,0x8d2a4c8a);
     83 
     84 	HH(a,b,c,d,m[5],  4,0xfffa3942);
     85 	HH(d,a,b,c,m[8], 11,0x8771f681);
     86 	HH(c,d,a,b,m[11],16,0x6d9d6122);
     87 	HH(b,c,d,a,m[14],23,0xfde5380c);
     88 	HH(a,b,c,d,m[1],  4,0xa4beea44);
     89 	HH(d,a,b,c,m[4], 11,0x4bdecfa9);
     90 	HH(c,d,a,b,m[7], 16,0xf6bb4b60);
     91 	HH(b,c,d,a,m[10],23,0xbebfbc70);
     92 	HH(a,b,c,d,m[13], 4,0x289b7ec6);
     93 	HH(d,a,b,c,m[0], 11,0xeaa127fa);
     94 	HH(c,d,a,b,m[3], 16,0xd4ef3085);
     95 	HH(b,c,d,a,m[6], 23,0x04881d05);
     96 	HH(a,b,c,d,m[9],  4,0xd9d4d039);
     97 	HH(d,a,b,c,m[12],11,0xe6db99e5);
     98 	HH(c,d,a,b,m[15],16,0x1fa27cf8);
     99 	HH(b,c,d,a,m[2], 23,0xc4ac5665);
    100 
    101 	II(a,b,c,d,m[0],  6,0xf4292244);
    102 	II(d,a,b,c,m[7], 10,0x432aff97);
    103 	II(c,d,a,b,m[14],15,0xab9423a7);
    104 	II(b,c,d,a,m[5], 21,0xfc93a039);
    105 	II(a,b,c,d,m[12], 6,0x655b59c3);
    106 	II(d,a,b,c,m[3], 10,0x8f0ccc92);
    107 	II(c,d,a,b,m[10],15,0xffeff47d);
    108 	II(b,c,d,a,m[1], 21,0x85845dd1);
    109 	II(a,b,c,d,m[8],  6,0x6fa87e4f);
    110 	II(d,a,b,c,m[15],10,0xfe2ce6e0);
    111 	II(c,d,a,b,m[6], 15,0xa3014314);
    112 	II(b,c,d,a,m[13],21,0x4e0811a1);
    113 	II(a,b,c,d,m[4],  6,0xf7537e82);
    114 	II(d,a,b,c,m[11],10,0xbd3af235);
    115 	II(c,d,a,b,m[2], 15,0x2ad7d2bb);
    116 	II(b,c,d,a,m[9], 21,0xeb86d391);
    117 
    118 	ctx->state[0] += a;
    119 	ctx->state[1] += b;
    120 	ctx->state[2] += c;
    121 	ctx->state[3] += d;
    122 }
    123 
    124 void md5_init(MD5_CTX *ctx)
    125 {
    126 	ctx->datalen = 0;
    127 	ctx->bitlen = 0;
    128 	ctx->state[0] = 0x67452301;
    129 	ctx->state[1] = 0xEFCDAB89;
    130 	ctx->state[2] = 0x98BADCFE;
    131 	ctx->state[3] = 0x10325476;
    132 }
    133 
    134 void md5_update(MD5_CTX *ctx, const BYTE data[], size_t len)
    135 {
    136 	size_t i;
    137 
    138 	for (i = 0; i < len; ++i) {
    139 		ctx->data[ctx->datalen] = data[i];
    140 		ctx->datalen++;
    141 		if (ctx->datalen == 64) {
    142 			md5_transform(ctx, ctx->data);
    143 			ctx->bitlen += 512;
    144 			ctx->datalen = 0;
    145 		}
    146 	}
    147 }
    148 
    149 void md5_final(MD5_CTX *ctx, BYTE hash[])
    150 {
    151 	size_t i;
    152 
    153 	i = ctx->datalen;
    154 
    155 	// Pad whatever data is left in the buffer.
    156 	if (ctx->datalen < 56) {
    157 		ctx->data[i++] = 0x80;
    158 		while (i < 56)
    159 			ctx->data[i++] = 0x00;
    160 	}
    161 	else if (ctx->datalen >= 56) {
    162 		ctx->data[i++] = 0x80;
    163 		while (i < 64)
    164 			ctx->data[i++] = 0x00;
    165 		md5_transform(ctx, ctx->data);
    166 		memset(ctx->data, 0, 56);
    167 	}
    168 
    169 	// Append to the padding the total message's length in bits and transform.
    170 	ctx->bitlen += ctx->datalen * 8;
    171 	ctx->data[56] = ctx->bitlen;
    172 	ctx->data[57] = ctx->bitlen >> 8;
    173 	ctx->data[58] = ctx->bitlen >> 16;
    174 	ctx->data[59] = ctx->bitlen >> 24;
    175 	ctx->data[60] = ctx->bitlen >> 32;
    176 	ctx->data[61] = ctx->bitlen >> 40;
    177 	ctx->data[62] = ctx->bitlen >> 48;
    178 	ctx->data[63] = ctx->bitlen >> 56;
    179 	md5_transform(ctx, ctx->data);
    180 
    181 	// Since this implementation uses little endian byte ordering and MD uses big endian,
    182 	// reverse all the bytes when copying the final state to the output hash.
    183 	for (i = 0; i < 4; ++i) {
    184 		hash[i]      = (ctx->state[0] >> (i * 8)) & 0x000000ff;
    185 		hash[i + 4]  = (ctx->state[1] >> (i * 8)) & 0x000000ff;
    186 		hash[i + 8]  = (ctx->state[2] >> (i * 8)) & 0x000000ff;
    187 		hash[i + 12] = (ctx->state[3] >> (i * 8)) & 0x000000ff;
    188 	}
    189 }